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Let Tripartite graphs be graphs with three sets of points, each set located on one side of a 

triangle.  Similar to bipartite graphs, the function ☾2,1,1) would be a graph with one side having 
two points and the other two sides having one point each, and the result of the function being 
equal to the number of intersections between lines when each point in each set of points is 
mutually connected to each point in both of the other sets of points with a line (See figure A). 
For ☾2,1,1), the result would be 1 because there is only one intersection. 

Let m☆n be the number of intersections in a bipartite graph with m points on one side and 
n points on the other.  We have shown that m☆n = △(m-1)△(n-1) where △ is the triangular 
number function (See Appendix A). 

 
For tripartite graphs, the number of dots on each side relates to the number of intersections 

by the equation: 
 

☾m, n, q) = 
¼[​m​2​n​2​+m​2​q​2​+n​2​q​2​-m​2​n-n​2​m-m​2​q-q​2​m-n​2​q-q​2​n+mn+mq+nq+2m​2​nq+2n​2​mq+2q​2​mn-6mnq], where 
m, n, and q are letters representing the number of points on each side. 

 
Consider the tripartite graph of m,n,q as the combination of three bipartite graphs: m ​with ​(n+q) 

(the m-pair),  n​ with ​(q+m) (the n-pair), and q​ with ​(m+n) (the q-pair). However, we must take into 
account the number of intersections created by the complex interplay of these bipartite graphs.  We have 
overcounted!  The bipartite graphs of m ​with ​(n+q) and n​ with ​(q+m) both share the bipartite graph of m 
with n, causing its intersections to be counted twice.  (See Figures B, C and D;  overcounted intersection 
is circled.)  
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☾m,n,q) is therefore found by​ summing the star of the m-pair, the n-pair, and the q-pair, and 

then subtracting the overcounted intersections. It can be written as 
m​☆(n+q)+n☆(m+q)+q☆(m+n)-m☆n-m☆q-n☆q.​ ​ Using our previous bipartite proof, this can be 
rewritten as 
△(m-1)△(n+q-1)+△(n-1)△(m+q-1)+△(q-1)△(m+n-1)-△(m-1)△(n-1)-△(m-1)△(q-1)-△(n-
1)△(q-1), OR ☾ m, n, q) = 
¼[​m​2​n​2​+m​2​q​2​+n​2​q​2​-m​2​n-n​2​m-q​2​m-m​2​q-n​2​q-q​2​n+mn+mq+nq+2m​2​nq+2n​2​mq+2q​2​mn-6mnq] 

 
  



Appendix A 
 (A proof by induction) 

 
 

For a planar Euclidean bipartite graph, let m be the number of points in the upper row, 
and let n be the number of points in the lower row. Let m☆n be equal to the number of 
intersections between two edges when every point in the upper row is connected by an edge to 
every point in the lower row.  We will show that m☆n=△(m-1)△(n-1)=[nm(n-1)(m-1)]/4. 

Base Case: 
We will show that this formula works for the base case 1​☆1.  There is one dot on the top and 

one dot on the bottom, and a line connects them.  Obviously a straight line cannot intersect itself 
making zero intersections, and so 1☆1 is equal to zero. △(1-1), or the 0th triangular number, is 
also obviously 0. Substituting this into the second half of the equation and simplifying, we get 
0*0. Therefore, the second half of the equation is 0 as well. Thus, we have shown that our 
formula holds for the base case of 1☆1; yay!, we did it. 

Inductive Step: 
Assume that ​m☆n does indeed equal △(m-1)△(n-1) for some natural numbers m,n.  We 

will show that this formula works for m☆(n+1).  You should also know that ☆ is commutative 
because the top and the bottom of a bipartite graph can be switched. This means that do not have 
to prove that m can be increment separately.  
 

The upper row of vertices of the bipartite graph will be called A and the lower row B. 
Each vertex in a row will be called by the name of its row sub its distance from the left starting 
with 1. (ie A​1​, A​2​, etc. and B​1​, B​2 ​, etc.). Each edge is called by its two endpoints (ie A​1​B​2​). 

 
Recall that △(x) = (x*(x+1))/2 

 
Suppose that when adding a new point to B, you always add it on the right. Let’s call the 

new point B​n​. The edge B​n​A​1 ​will cross all of the pre-existing edges except those with an 
endpoint of A​1​. Therefore, the number of new intersections will be equal to n(m-1). Then each 
following edge (B​n​A​2 ​B​n​A​3​) will cross n fewer edges than the previous added edge. 

In other words,we are adding n(m-1)+n(m-2)+...+n(2)+n(1).a  
Factoring out the n gives us the following number of intersections: 
△(m-1)*△(n-1) + n*△(m-1) = 
△(m-1)*△(n-1)+n) = 
△(m-1)*△(n) This is equal to m☆(n+1) We are now done with the inductive step. 



 
Because we have established a base case and we can increment from any m and n that 

follow the formula to the next case, we have now proven that the formula will hold for all natural 
numbers n and m.  

Try to find an n,m where it doesn’t work. You won’t find one! Boo-yah! 
 
Quod Erat Demonstrandum! 


